Rademacher and Gaussian Complexities: Risk Bounds and Structural Results

نویسندگان

  • Peter L. Bartlett
  • Shahar Mendelson
چکیده

Abstract We investigate the use of certain data-dependent estimates of the complexity of a function class, called Rademacher and Gaussian complexities. In a decision theoretic setting, we prove general risk bounds in terms of these complexities. We consider function classes that can be expressed as combinations of functions from basis classes and show how the Rademacher and Gaussian complexities of such a function class can be bounded in terms of the complexity of the basis classes. We give examples of the application of these techniques in finding data-dependent risk bounds for decision trees, neural networks and support vector machines.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Complexity of Linear Prediction: Risk Bounds, Margin Bounds, and Regularization

This work characterizes the generalization ability of algorithms whose predictions are linear in the input vector. To this end, we provide sharp bounds for Rademacher and Gaussian complexities of (constrained) linear classes, which directly lead to a number of generalization bounds. This derivation provides simplified proofs of a number of corollaries including: risk bounds for linear predictio...

متن کامل

Rademacher Complexities and Bounding the Excess Risk in Active Learning

Sequential algorithms of active learning based on the estimation of the level sets of the empirical risk are discussed in the paper. Localized Rademacher complexities are used in the algorithms to estimate the sample sizes needed to achieve the required accuracy of learning in an adaptive way. Probabilistic bounds on the number of active examples have been proved and several applications to bin...

متن کامل

An Inequality with Applications to Structured Sparsity and Multitask Dictionary Learning

From concentration inequalities for the suprema of Gaussian or Rademacher processes an inequality is derived. It is applied to sharpen existing and to derive novel bounds on the empirical Rademacher complexities of unit balls in various norms appearing in the context of structured sparsity and multitask dictionary learning or matrix factorization. A key role is played by the largest eigenvalue ...

متن کامل

Local Rademacher complexity bounds based on covering numbers

This paper provides a general result on controlling local Rademacher complexities, which captures in an elegant form to relate the complexities with constraint on the expected norm to the corresponding ones with constraint on the empirical norm. This result is convenient to apply in real applications and could yield refined local Rademacher complexity bounds for function classes satisfying gene...

متن کامل

Rademacher Chaos Complexities for Learning the Kernel Problem

We develop a novel generalization bound for learning the kernel problem. First, we show that the generalization analysis of the kernel learning problem reduces to investigation of the suprema of the Rademacher chaos process of order 2 over candidate kernels, which we refer to as Rademacher chaos complexity. Next, we show how to estimate the empirical Rademacher chaos complexity by well-establis...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of Machine Learning Research

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2001